Storage Design for Enterprise SSDs - Page 2


Want the latest storage insights?

Download the authoritative guide: Enterprise Data Storage 2018: Optimizing Your Storage Infrastructure

Share it on Twitter  
Share it on Facebook  
Share it on Google+
Share it on Linked in  

Enterprise SSD Variation

Enterprise SSDs come in various types as well. You should pay very close attention to the specifications of the drives. SSD manufacturers will sometimes offer different endurance options with enterprise SSDs. Pay attention to the DWPD and/or TBW numbers as well as the length of the warranty.

Moreover, manufacturers also offer enterprise SSDs that are more read-oriented or more write-oriented. For example, a more read-oriented drive might appear in the specs as a drive with a low DWPD relative to other drives, perhaps a DWPD of 1, and perhaps with a large capacity. Write-intensive drives will have a much higher DWPD and perhaps a lower capacity.

To better understand the drive variations, let's look at some example drives. The first drive family is the Intel DC S3x10 drives. The DC3710 series of drives is designed for up to 10 DWPD and up to 24.3 Petabytes written (TBW). In the same family is the DC3610 series of drives with is listed with a DWPD of 3 and up to 10.7 Petabytes of data written (TBW). The third drive in the family is the DC 3510 series of drives that is listed with a DWPD of 0.3 and up to 880 TBW. Within a single family of drives, this illustrates the wide range of specs for the various drives.

Another example is the Toshiba PX02SS enterprise SSDs. These drives have a DWPD rating of 30. They also have a read-intensive series of drives that is listed with a DWPD of 0.5 or 1.

In addition to various drive interfaces we now have enterprise SSDs with various endurance, performance and capacity characteristics. In the world of optimization, this is said to "increase the dimensionality of the design space" or "increases the number of degrees if freedom." In other words, you have many more options when designing or architecting a storage solution.

Storage Design with Enterprise SSDs

The storage solution design space, if you are starting from scratch, has a tremendous number of options. There are network options, drive options (HD or SSD), options for drive performance and capacity, options for drive endurance (SSDs), drive interface options, array options, file system options, and on and on. There are decision points within this matrix of options but it is beyond the scope of this article to work through them all. For this article, I want to restrict the options just to enterprise SSDs regardless of interface. This leaves us with capacity and endurance (DWPD and/or TBW) as primary features.

Recall that there can be large variations in enterprise SSDs. These variations are a function of DWPD, capacity and performance. This gives us great flexibility but also means we will need to make decisions during the design phase.

The first decision point is around whether the applications are write-intensive, read-intensive, a combination of both, WORM (write once, read-many, WORN (write-once, read-never) or some combination of these. With this information, you can start to focus in on drives that have a large DWPD (large TBW) or a smaller value or somewhere in between.

The second decision point that comes up is total needed storage capacity. Depending upon some other factors this could push you toward certain drive capacities. In turn this could also drive certain RAID levels. But be careful — introducing RAID could force you to rethink DWPD (TBW) to accommodate the RAID parity that accompanies RAID.

The third decision point (and this one is actually part of the other two) is the volatility of the data. Are the enterprise SSDs being used for volatile data like swap data or for less volatile data such as logs or application output? If they are used for volatile data, then perhaps enterprise SSDs are overkill and consumer SSDs could be used, saving money. There are cases that even for volatile data you might want to use enterprise SSDs because of the importance of having much better reliability in the device.

A related decision is if the data is being redundantly stored somewhere. If you have a copy of the data somewhere else, then perhaps the storage solution would look different. For example, if the data is stored somewhere else, then users could access the data from that storage, allowing the focus of the enterprise storage to be on write-intensive drives with a medium or large value of DWPD (TBW). Or, you could even switch to consumer SSDs since you have a copy of the data elsewhere. This could also allow you to select smaller capacity drives because the applications are just writing to the storage and reads happen from other storage.

Enterprise SSDs and Storage Design: A Blessing and a Curse

It is clear that enterprise SSDs are much better than consumer drives for enterprise workloads. They have better endurance, more consistent performance, more consistent quality of service, longer warranties and better data protection than consumer SSDs. Drive manufacturers have created a wide range of enterprise drives with varying characteristics. This gives us tremendous flexibility, which is both a blessing and a curse. It's a blessing because we know have more freedom and can tailor the storage system to the needs of the applications. It's a curse because it's going to take more work to design the storage solution.

Regardless of whether it's a blessing or a curse, there is one thing that is obvious — you will need to know your applications very well to properly design the storage solution. This knowledge includes knowing the importance of IO to the applications, the IO patterns and how much data is written and read during normal operations. Without knowing any of this information, storage design with enterprise SSDs, or any storage devices, reduces to random selection. If you know your IO patterns to some degree, then enterprise SSDs are definitely a blessing, allowing you to tailor the storage design to the applications. But if you don't really know anything about the IO patterns of the applications, then enterprise SSDs can be a curse.

This article represents my own viewpoints and not those of my employer, Amazon Web Services.

Photo courtesy of Shutterstock.

Submit a Comment


People are discussing this article with 0 comment(s)