SCSI Failing to Drive Out Satan Page 2


Want the latest storage insights?

Download the authoritative guide: Enterprise Data Storage 2018: Optimizing Your Storage Infrastructure

A Rapid Ride to Acceptance

The reasons for SATA's rapid progress are simple — SATA technology is improving in performance and capacity while continuing to benefit from a reduced cost. This has created an enticing sweet spot of price/performance that is particularly attractive in delivering storage solutions for non-mission-critical data.

SATA applications are wide ranging as well. The technology can be used, for example, as a near-term repository for data that will eventually be archived to tape. Additionally, SATA can be used in snapshot repositories, in remote volume mirroring destinations, or for electronic vaulting. SATA is well suited to tiered storage uses as well, especially for applications that require storage with varying performance, availability, and cost characteristics.

SATA is also gaining acceptance in low cost, entry-level SANs targeted to small and medium-sized businesses (SMBs), especially when coupled with iSCSI. According to some analysts, SATA storage solutions could cut costs by as much as 60%.

Even without this cost benefit, from a technology viewpoint there are compelling drivers for utilizing SATA. As well as bandwidth and flexibility demands putting increasing pressure on parallel systems, there are inherent problems with traditional SCSI and ATA, including incompatible cables and connectors, different software, simple physical space problems with bulky SCSI cables, and restrictions on the lengths of cables due to the need for eliminating the possibility of signal errors. In solving these issues, SATA improves integration efficiency and creates long-term scalability and cost benefits that are vital for forward progress.

Where SCSI has excelled to date has been in speed and reliability. ATA and SATA drives typically operate at speeds of 5,000 to 10,000 rpm (revolutions per minute), whereas SCSI generally operates around the 15,000 rpm mark. And MTBF (Mean Time Between Failure) for ATA/SATA desktop drives has usually been pegged in the range of a few hundred thousand hours, while SCSI drives generally are rated at well over a million hours. The tradeoff, of course, is the higher cost.

Perhaps the most interesting development, though, is the melding together of the best of both worlds through the integration of SATA and SCSI via Serial Attached SCSI (SAS). This next-generation evolution of SCSI leverages proven technology while enabling integration with SATA and all of its inherent benefits.

One of the crucial features is the enablement of one of more SAS host controllers to connect to a large number of drives. Using an expander, a controller can connect to other host connections and expanders. This architecture enables massive storage network topologies, as well as the balance of lower-cost/lower-performance SATA drives where they are appropriate with higher-cost/more reliable SCSI devices in areas where they are needed.

According to IDC's McArthur, "SATA and SAS is a marriage made in heaven."

This story originally appeared on Enterprise IT Planet.

» See All Articles by Drew Robb

Submit a Comment


People are discussing this article with 0 comment(s)