SHARE
Facebook X Pinterest WhatsApp

Data Lake vs. Data Swamp

thumbnail Data Lake vs. Data Swamp

Data lake.

Data lakes and data swamps are similar approaches to data storage, compiling structured and unstructured data in one repository. Large enterprises are most likely to use lakes and swamps because they need to hold enormous amounts of data, even if they don’t know when or why they’ll need it. Data lakes and swamps cost less […]

Written By
thumbnail Jenna Phipps
Jenna Phipps
Aug 27, 2021
Enterprise Storage Forum content and product recommendations are editorially independent. We may make money when you click on links to our partners. Learn More

Data lakes and data swamps are similar approaches to data storage, compiling structured and unstructured data in one repository. Large enterprises are most likely to use lakes and swamps because they need to hold enormous amounts of data, even if they don’t know when or why they’ll need it. Data lakes and swamps cost less than structured storage because they’re more scalable; all data can be added to the repository without needing a particular format.

What does a data lake do?

Data lakes are beneficial because they require less carefully organized storage than warehouses, which store highly structured data. Best Big Data analytics practices include analyzing both unstructured and partly structured data instead of having them siloed in different databases or warehouses. Data lakes can hold objects, which makes them useful for enterprises with large amounts of unstructured data.

Also Read: Data Lake vs. Data Warehouse: What is the Difference?

However, that doesn’t mean that throwing a bunch of data in a lake with no controls or organization whatsoever will result in beautiful or useful data analytics for your business. Lakes need structure in their own way. But unlike warehouses, they mainly need:

  • Easy ways to locate data
  • Governance for data
  • Methods of cleaning and sorting data
  • Plans for utilizing accurate and useful data

Successful data lakes have metadata stored along each data object. This metadata categorizes data and makes it easier to locate within the lake. Clearly defined objects decrease the backlog of time that sorting through data requires.

Data governance includes the policies set for stored data: how long it should be stored, who should be allowed to access it, and what compliance requirements it needs to meet. Compliance is particularly important if you’re storing any type of customer data. Data protection regulations set strict guidelines for customer data and also require organizations to track how many people have access to it.

Much of the data thrown in a lake will eventually grow outdated. If BI platforms or analysts are using this data to make decisions, that data should be accurate. Data lakes need methods of cleaning old, outdated objects when they’re no longer accurate or no longer need to be stored for regulatory purposes.

The four characteristics of a successful data lake designate the difference between a data lake and a data swamp.

Also Read: Drain the Swamp: Understanding Data Lake Architecture

What does a data swamp do?

Data swamps usually begin as a lake. Enterprises don’t plan to start a data swamp; swamps aren’t sold as-a-service, nor are they marketed. Data lakes turn into swamps when businesses don’t set expectations and guidelines for their data storage. Swamps make analysis and retrieval very challenging.

data swamp.

Data swamps become a catch-all for data. When an organization needs or wants to store data, and they don’t know how to categorize it or don’t need to put it in a warehouse, a data lake-turned-swamp is waiting to collect all unrelated objects and files. Data swamps store unnecessary and outdated objects because users toss anything in them, without setting guidelines for relevance or timeliness.

Data swamps aren’t regularly managed or governed by administrators or analysts. They don’t have controls or categorization placed on their stored objects. That’s part of the reason they don’t lend themselves to big data analytics. The other reason is their lack of metadata. Objects and files stored in swamps frequently don’t have metadata, which makes them incredibly challenging to search or organize.

Data swamps are also a danger to compliance. They obscure customer data, and if businesses can’t find data in the murky recesses of the swamp, they could be found non-compliant to regulatory standards that require data to be retrieved or deleted. Most regulations require businesses to keep strictly accurate records of data, including who has access to it, and data swamps make that difficult (or impossible).

Keeping your data lake from becoming a swamp

There’s certainly something very appealing about being able to toss any piece of data in a huge, scalable storage repository without having to worry about it. But that strategy doesn’t set enterprises up for future analytics or success. Data swamps are only useful for unimportant, random data that doesn’t need to be used in any business intelligence ventures.

As previously mentioned, data lakes need organization so they present useful, relevant data. When lakes are intentionally designed, all objects and files have metadata, and data is closely governed, lakes have the potential to give accurate and game-changing business insights. They just require some work at the beginning before they get there.

 

Read next: 7 Essential Compliance Regulations for Data Storage Systems 

thumbnail Jenna Phipps

Jenna Phipps is a staff writer for Enterprise Storage Forum and eSecurity Planet, where she covers data storage, cybersecurity and the top software and hardware solutions in the storage industry. She’s also written about containerization and data management. Previously, she wrote for Webopedia. Jenna has a bachelor's degree in writing and lives in middle Tennessee.

Recommended for you...

What is Fibre Channel over Ethernet (FCoE)?
Drew Robb
Dec 8, 2023
Best Enterprise Hard Drives for 2023
Leon Yen
Nov 17, 2023
What Is Fibre Channel over IP (FCIP)
Drew Robb
Nov 16, 2023
RPO and RTO: Understanding the Differences
Zac Amos
Nov 13, 2023
Enterprise Storage Forum Logo

Enterprise Storage Forum offers practical information on data storage and protection from several different perspectives: hardware, software, on-premises services and cloud services. It also includes storage security and deep looks into various storage technologies, including object storage and modern parallel file systems. ESF is an ideal website for enterprise storage admins, CTOs and storage architects to reference in order to stay informed about the latest products, services and trends in the storage industry.

Property of TechnologyAdvice. © 2025 TechnologyAdvice. All Rights Reserved

Advertiser Disclosure: Some of the products that appear on this site are from companies from which TechnologyAdvice receives compensation. This compensation may impact how and where products appear on this site including, for example, the order in which they appear. TechnologyAdvice does not include all companies or all types of products available in the marketplace.