What Is Software-Defined Storage? - Page 2


Want the latest storage insights?

Download the authoritative guide: Enterprise Data Storage 2018: Optimizing Your Storage Infrastructure

Share it on Twitter  
Share it on Facebook  
Share it on Google+
Share it on Linked in  

This architecture is particularly useful for unstructured data, which can be difficult to manage effectively in a traditional storage environment. This includes text files, emails, machine data, audio and video, log files, social data, sensor data, and much, much more. An SDS environment allows mixed protocols and data types to exist in a virtualized and centrally managed storage infrastructure.

Let’s look at the drawbacks to traditional storage infrastructure and see how SDS can address them.

Traditional Storage Drawbacks and SDS Advantages


Several storage and storage management vendors call their offerings software-defined storage. But the label isn't always accurate. For example, a clustered file system is by no means automatically SDS, even though an SDS solution will provide services to an infrastructure containing filers.

We’ll stick with the definition of SDS as a method of decoupling storage hardware from data and providing a management service layer for provisioning, management and data services across a distributed infrastructure.

Dell EMC offers SDS via EMC ViPR, a software-only virtual appliance that runs on VMware ESX servers. The controller automates storage across EMC and third-party vendor storage by abstracting and pooling resources via a self-service catalog. Dell also markets SDS via their partnership with open-source Nexenta software. Nexenta virtualizes servers, storage and networks to create a software-defined data center running on Dell hardware. I would define this more as a hyperconverged environment, but it does have SDS features.

HPE StoreVirtual offers software-defined storage and a central management console for virtual environments without external shared storage for the VMs. StoreVirtual can run on multiple servers to create redundant clustered storage pools using internal disk or external storage.

IBM Spectrum Storage is a large family of storage management products for the flexible enterprise and web-scale business. It includes SDS features for highly scalable block and file storage with intelligent data services including data protection and archiving. Individual products are delivered as software, IBM appliances or cloud services. Spectrum Storage supports both IBM and third-party storage platforms.

NetApp's offering may not strictly be SDS as it lacks a common management interface. However, the company has invested in placing SDS technology in Data ONTAP OS, OnCommand, FlexArray virtualization and the FAS enterprise storage series. Its SDS characteristics virtualize storage services and service levels, as well as offering APIs for automating workflow and customizing applications.

VMware is an SDS pioneer thanks to its software-defined data center (SDDC) concept. VMware abstracts data and data services from physical storage and creates virtual data stores for VMs. Adding VVols lets admins assign individual policy-driven configurations to different virtual stores.

FalconStor FreeStor SDS delivers data services across multiple storage infrastructures. The underlying engine uses Intelligent Abstraction to decouple applications, data and workloads from physical storage and fabric.

Lower Costs with SDS

I wrote earlier that massive data growth was the driver for SDS. The hoped-for benefit is to lower the cost of storing and managing massive data, which is the whole idea behind the SDS business case. It’s no accident that just as server virtualization solved a lot of tough problems by consolidating servers, so SDS can actively address big storage issues by combining storage devices into a highly protected and automated whole.

Photo courtesy of Shutterstock.

Submit a Comment


People are discussing this article with 0 comment(s)